Graphing Nonlinear Equations
To graph nonlinear equations in two variables...

1. Assume a value for one of the variables (either x or y), then solve for the value of the other variable.*
2. Express these values of x and y as an ordered pair.
3. Repeat Steps 1 and 2 until you have "enough" points**
4. Determine the scale of the x-axis and the y-axis
5. Plot the ordered pairs
6. Connect the points to graph the equation

* If the equation starts with " $y=$ ", then assume values for x. But if the equation starts with " $x=$ ", then assume values for y.
** If the equation is linear, two or three points is "enough." If the equation is non-linear, many more points are needed.

As a Class: MyMathLab Study Plan Problem 3.1.45
Determine whether the equation is linear or not. Then graph the equation by finding and plotting ordered-pair solutions.
$y=|x|$.

Hint: This equation is an absolute value graph and should have a " V "-shape. Be sure to pick values of x that show this shape!

MAC1105 College Algebra

Build and Analyze Functions (Type 2: Area Determined by a Point on a Function")

For Type 2 problems, the point (x, y) on the function is a point on a geometric shape. If that shape is a rectangle, then the area of that rectangle is length times width. Since the length is x and the width is y, we use the formula $A=x y$. If that shape is a triangle instead, then the area is one-half the base times the height. Since the base is x and the height is y, we use the formula $A=\frac{1}{2} x y$. In either case, we replace y with whatever it is equal to in the given equation, then simplify.

As a Class: MyMathLab Study Plan Problems 3 and 4
A rectangle has one corner on the graph of $y=9-x^{2}$, another at the origin, a third on the positive y axis, and the fourth on the positive x-axis (see the figure).
(a) Express the area A of the rectangle as a function of x.
(b) What is the domain of A ?
(c) Using a graphing utility, graph $A(x)$.
(d) For what value of x is A largest?

$y=9-x^{2}\{0<x<3\}$

$$
\left(a, 9-a^{2}\right)
$$Show Label

3
$a=1$
0

4
2) $0<x<a\left\{0<y<9-a^{2}\right\}$

5
e) $0<y<9-a^{2}\{0<x<a\}$

6
(a) $\left(9-a^{2}\right)$

$$
=8
$$

7
$y=x\left(9-x^{2}\right)\{0<x<3\}$

8

$$
\left(a, 9 a-a^{3}\right)
$$

MAC1114 College Trigonometry

Transform Trigonometric Functions

When the function $f(x)=\sin x$ is transformed, one new form is $f(x)=a \sin (b x+c)$ where a, b, and c are real numbers. What effect does each of these real numbers have on the graph? Fill in the blanks in the sentences below.

When a is adjusted the graph \qquad .

When b is adjusted the graph \qquad .

When c is adjusted the graph \qquad .

When the value of a is positive, \qquad .

When the value of a is negative, \qquad .

When the value of b is close to zero, \qquad .

When the value of b is far from zero, \qquad .

When the value of b equals zero, \qquad .

When the value of c is positive, \qquad .

When the value of c is negative, \qquad .

MAC2311 Calculus I

Understand the Relationship Between the Derivative, the Secant Line, and the Tangent Line.
For the function $f(x)=x^{2}+x+2$, find the derivative $f^{\prime}(x)$ using the definition of the derivative. Then evaluate $f^{\prime}(x)$ at $x=0$. Finally, find the equation of the tangent line to $f(x)$ at $x=0$.

$$
\begin{aligned}
& f(x)=x^{2}+x+2 \\
& \begin{aligned}
f^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}+(x+h)+2-\left(x^{2}+x+2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}+x+h+2-x^{2}-x-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}+h}{h} \\
& =\lim _{h \rightarrow 0} \\
f^{\prime}(x) & =2 x+h+1
\end{aligned} \\
& f^{\prime}(0)=2(0)+1=1
\end{aligned}
$$

To find the tangent line, note that...
$f(x)=x^{2}+x+2$
$f(0)=0^{2}+0+2=2$
So at the point $(0,2)$, the slope is 1. Putting these in the point-slope form give the equation of the tangent line, $y-2=1(x-0)$, which simplifies to $y=x+2$.

To find the secant line through $(0, f(0))$ and $(0+h, f(0+h))$, note that...
$(0, f(0))$ is $(0,2)$ and $(0+h, f(0+h))$ is $\left(h, h^{2}+h+2\right)$.
Therefore the secant line from $(0,2)$ to $\left(h, h^{2}+h+2\right)$ has slope
$m=\frac{h^{2}+h+2-2}{h}=\frac{h^{2}+h}{h}=h+1$
Using this slope with the point-slope formula, the equation of the secant line is therefore $y-2=(h+1)(x-0)$, which simplifies to $y=h x+x+2$.

