MAT1033C Intermediate Algebra

Graphing Nonlinear Equations

To graph nonlinear equations in two variables...

- 1. Assume a value for one of the variables (either x or y), then solve for the value of the other variable.*
- 2. Express these values of x and y as an ordered pair.
- 3. Repeat Steps 1 and 2 until you have "enough" points**
- 4. Determine the scale of the x-axis and the y-axis
- 5. Plot the ordered pairs
- 6. Connect the points to graph the equation
- * If the equation starts with "y =", then assume values for x. But if the equation starts with "x =", then assume values for y.
- ** If the equation is linear, two or three points is "enough." If the equation is non-linear, many more points are needed.

As a Class: MyMathLab Study Plan Problem 3.1.45

Determine whether the equation is linear or not. Then graph the equation by finding and plotting ordered-pair solutions.

y = |x|.

Hint: This equation is an absolute value graph and should have a "V"-shape. Be sure to pick values of x that show this shape!

MAC1105 College Algebra

Build and Analyze Functions (Type 2: Area Determined by a Point on a Function")

For Type 2 problems, the point (x,y) on the function is a point on a geometric shape. If that shape is a rectangle, then the area of that rectangle is length times width. Since the length is x and the width is y, we use the formula A=xy. If that shape is a triangle instead, then the area is one-half the base times the height. Since the base is x and the height is y, we use the formula $A=\frac{1}{2}xy$. In either case, we replace y with whatever it is equal to in the given equation, then simplify.

As a Class: MyMathLab Study Plan Problems 3 and 4

A rectangle has one corner on the graph of $y = 9 - x^2$, another at the origin, a third on the **positive** y-axis, and the fourth on the **positive** x-axis (see the figure).

- (a) Express the area A of the rectangle as a function of x.
- (b) What is the domain of A?
- (c) Using a graphing utility, graph A(x).
- (d) For what value of x is A largest?

MAC1114 College Trigonometry

Transform Trigonometric Functions

When the function $f(x) = \sin x$ is transformed, one new form is $f(x) = a \sin(bx + c)$ where a, b, and c are real numbers. What effect does each of these real numbers have on the graph? Fill in the blanks in the sentences below.

When a is adjusted the graph $_$
When b is adjusted the graph
When c is adjusted the graph
When the value of a is positive,
When the value of a is negative,
When the value of b is close to zero,
When the value of b is far from zero,
When the value of b equals zero,
When the value of c is positive,
When the value of c is negative,

MAC2311 Calculus I

Understand the Relationship Between the Derivative, the Secant Line, and the Tangent Line.

For the function $f(x) = x^2 + x + 2$, find the derivative f'(x) using the definition of the derivative. Then evaluate f'(x) at x = 0. Finally, find the equation of the tangent line to f(x) at x = 0.

$$f(x) = x^2 + x + 2$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 + (x+h) + 2 - (x^2 + x + 2)}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2hx + h^2 + x + h + 2 - x^2 - x - 2}{h}$$

$$= \lim_{h \to 0} \frac{2hx + h^2 + h}{h}$$

$$= \lim_{h \to 0} 2x + h + 1$$

$$f'(x) = 2x + 1$$

$$f'(0) = 2(0) + 1 = \boxed{1}$$

To find the tangent line, note that...

$$f(x) = x^2 + x + 2$$

$$f(0) = 0^2 + 0 + 2 = 2$$

So at the point (0,2), the slope is 1. Putting these in the point-slope form give the equation of the tangent line, y-2=1(x-0), which simplifies to y=x+2.

To find the secant line through (0, f(0)) and (0 + h, f(0 + h)), note that...

$$(0, f(0))$$
 is $(0,2)$ and $(0 + h, f(0 + h))$ is $(h, h^2 + h + 2)$.

Therefore the secant line from (0,2) to $(h, h^2 + h + 2)$ has slope

$$m = \frac{h^2 + h + 2 - 2}{h} = \frac{h^2 + h}{h} = h + 1$$

Using this slope with the point-slope formula, the equation of the secant line is therefore

$$y-2=(h+1)(x-0)$$
, which simplifies to $y=hx+x+2$.

